If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2+5-35=0
We add all the numbers together, and all the variables
8x^2-30=0
a = 8; b = 0; c = -30;
Δ = b2-4ac
Δ = 02-4·8·(-30)
Δ = 960
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{960}=\sqrt{64*15}=\sqrt{64}*\sqrt{15}=8\sqrt{15}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{15}}{2*8}=\frac{0-8\sqrt{15}}{16} =-\frac{8\sqrt{15}}{16} =-\frac{\sqrt{15}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{15}}{2*8}=\frac{0+8\sqrt{15}}{16} =\frac{8\sqrt{15}}{16} =\frac{\sqrt{15}}{2} $
| 5(x+6)=5(x+6) | | 8=2-3(2x+4) | | 280=x^2+38x | | 2(2x+4)+2x=x+18 | | 8(-5n)+8=-96 | | -18=2w-6 | | 5x+225=25+15x | | (5x-28)+90(3x+14)=180 | | 9=x(2x+3)-2x | | 4x+2-x+8=4x | | 2(x+3)=6x-15 | | 2(f−41)=70 | | r+154=6 | | 9(w+5)=7w+25 | | (7x-4)+(5x+10)=180 | | 12(x−16)=27+4x | | 1/2(x−16)=27+4x | | (7x-4)=(5+10) | | (x+5)=(2x-24) | | y=45=12 | | -31=z+(17) | | -31=z=(-17) | | 8w+7w=-3 | | (-5+7i)-10-6i)=-15+i | | (9x-25)=(8x+6) | | 2(m-2.4)+1.1=10.7 | | x9−7=11 | | 50x+40=190 | | (x+11)=(2x+8) | | -3(-x2+5)=39 | | (6x+5)=(7×+4) | | 3(2x+2)=19x+8-5x+14 |